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locality and knowledge of the structure of the physical Yukawa couplings are sufficient

to find the relevant Kähler potential. Using these techniques we compute the ‘modular

weights’ for bifundamental matter on wrapped D7 branes for large-volume IIB Calabi-Yau

flux compactifications. We also apply our techniques to the case of toroidal compactifi-

cations, obtaining results consistent with those present in the literature. Our techniques

do not provide the complex structure moduli dependence of the Kähler potential, but are

sufficient to extract relevant information about the canonically normalised matter fields

and the soft supersymmetry breaking terms in gravity mediated scenarios.
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1. Introduction

Extracting the form of the effective four-dimensional field theory corresponding to com-

pactifications of string theory has been one of the most active areas of research in string

phenomenology over the years [1 – 5]. For N = 1 supersymmetric compactifications1 we

know that the effective supergravity theory depends on the Kähler potential K(Ψ,Ψ†), the

superpotential W (Ψ) and the gauge kinetic function f(Ψ), where Ψ represents the chiral

superfields surviving at low energies. These include both the charged matter superfields C

and the singlet moduli superfields Φ. It is well known that W and f , being holomorphic,

are under much better control than the real function K. In particular K is not protected

by the standard non-renormalization theorems of N = 1 supersymmetry.

The standard way to extract the functional form of K, W and f at tree-level is by di-

mensionally reducing the original 10D theory, having carefully identified the appropriate 4D

superfields in terms of the corresponding 10D geometrical quantities (see for instance [5]).

This allows the determination of K,W and f as functions of the moduli fields and some of

the matter fields. However there are some matter fields for which dimensional reduction

cannot provide the Kähler potential. These include the twisted sector fields of orbifold and

1Although the validity of our discussion is general, we will concentrate mostly on Calabi-Yau orientifold

compactifications of type IIB string theory.
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orientifold compactifications, bifundamental fields from magnetised D7 branes and those

stretching between D3 and D7 branes. For these cases explicit string amplitudes need to

be computed in order to extract the correct Kähler potential. These calculations are essen-

tially limited to flat backgrounds such as toroidal orientifolds [6 – 8], severely limiting the

information that can be extracted. In particular an explicit calculation in a IIB Calabi-Yau

orientifold seems out of reach.

The importance of knowing the Kähler potential for the physical matter fields is clear:

it is needed for correctly identifying the canonically normalised fields and therefore deter-

mines the structure of most of the observable physical quantities, such as the corresponding

scalar potential, the Yukawa couplings, etc. In particular, the matter Kähler potential plays

a crucial role in the determination of soft supersymmetry breaking terms.

On this regard let us be more specific. There has been much recent effort in under-

standing supersymmetry breaking in string compactifications. This follows on the progress

made in moduli stabilisation [9, 10], which allows the moduli potential to be computed

from first principles. The moduli breaking supersymmetry can be identified explicitly and

their F-terms evaluated. Prior to this and in the absence of explicit moduli potentials,2 it

was necessary to parametrise supersymmetry breaking as S-, T - or U - dominated, where

S is the 4D dilaton, T the Kähler moduli and U the complex structure moduli. Scenarios

of supersymmetry breaking were then constructed and analysed without an explicit mod-

uli potential [11]. In that the discussion of supersymmetry breaking now involves explicit

moduli potentials, much technical progress has been made.

However one major obstacle in phenomenological analyses has remained, which is the

lack of knowledge of the Kähler metric for Standard Model matter fields. The computation

of soft terms starts by expanding the superpotential, metric and gauge kinetic functions as

a power series in the matter fields,

W = Ŵ (Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)CαCβCγ + . . . , (1.1)

K = K̂(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)C̄αC β̄ +
[

Z(Φ, Φ̄)H1H2 + h.c.
]

+ . . . , (1.2)

fa = fa(Φ). (1.3)

Cα denotes a matter field and Φ a modulus field. In the explicit expressions for soft terms,

the matter metric K̃αβ̄ plays a crucial role. This quantity is non-holomorphic, and thus

unprotected and hard to compute. However it plays a central role as it determines both

the normalisation of the matter fields and their mass basis. In general, an arbitrary form

of K̃αβ̄ can lead to large flavour-changing neutral currents and off-diagonal A-terms. In the

absence of other information, K̃αβ̄ is often assumed to be diagonal and moduli-independent.

However, this assumption clearly does not hold for string compactifications where K̃αβ̄ is

a complicated function of the moduli. Given its importance for phenomenological appli-

cations, obtaining control over the functional form of K̃αβ̄ is one of the most important

problems in string phenomenology.

2Moduli potentials were actually studied in the past but without fixing all moduli and with no explicit

control on hierarchies.
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As mentioned before, explicit string CFT calculations such as [12] have been used

in toroidal compactifications to work out the matter metrics for adjoint, Wilson line and

bifundamental matter. For Calabi-Yau cases, dimensional reduction of D-brane actions

has allowed the determination of Wilson line and adjoint scalar metrics [5]. But so far

there exist very few results for Kähler metrics for bifundamental matter on Calabi-Yau

backgrounds. These are probably the most important phenomenologically since these are

the standard chiral fields in D-brane models which will include the quarks and leptons as

well as their superpartners.

The purpose of this paper is to give new techniques, applicable to Calabi-Yau back-

grounds, for computing Kähler matter metrics. The approach is to compute the modular

dependence of K̃αβ̄ by studying the modular dependence of the physical Yukawa couplings.

In certain cases this can be determined easily through dimensional reduction. However in

supergravity this is related to the matter metrics, and it is this that will allow us to deter-

mine the modular weights3 of K̃αβ̄ . Our main application will be to use these techniques

to compute modular weights for bifundamental matter on wrapped magnetised D7 branes

in the Calabi-Yau geometries of the large-volume models of [14, 15].

This paper is structured as follows. In section 2 we outline the philosophy of our

approach. We describe the calculational approach and the conditions on a modulus for its

modular weight to be determined using the techniques of this paper. We also present a

one-dimensional toy example to illustrate the techniques and show its relation to the IIB

compactifications that are our main interest. In section 3 we apply our approach first to

the large-volume models of [14]. We determine the modular weight of the overall volume

and describe how the modular weight of the small cycles can also be computed under

certain assumptions of the brane geometry. We then apply the same arguments to the

toroidal case. The results we obtain are consistent with the explicit computations of [12].

In section 6 we conclude.

2. Philosophy of the approach

To simplify the notation we will consider diagonal matter metrics, although the argument

and results holds for the general case. This assumption simplifies (1.3) to

K = K̂(Φ, Φ̄) +
∑

α

K̃α(Φ, Φ̄)CαC̄ ᾱ +
[

Z(Φ, Φ̄)H1H2 + h.c.
]

+ . . . . (2.1)

Using (2.1) we can define the canonically normalised matter fields Ĉα. These are related

to the unnormalised fields Cα by

Ĉα = K̃
1
2
α (Φ, Φ̄)Cα. (2.2)

3We follow standard conventions in calling the powers of moduli fields in the Kähler potential the

modular weights of the corresponding matter fields. The name came from the transformation properties of

the corresponding field under (toroidal) T -duality [13] in heterotic models.
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The approach we take stems from the supergravity formula for the physical (i.e. nor-

malised) Yukawa couplings,

Ŷαβγ = eK/2 Yαβγ

(K̃αK̃βK̃γ)
1
2

. (2.3)

(2.3) implies that information about the modular dependence of the matter metrics is en-

coded in the modular dependence of the physical Yukawas Ŷ , which may be relatively easy

to compute directly. Our aim is to use (2.3) in order to compute the modular dependence

of K̃α.

This approach could yield no useful information if the modular dependence of the

superpotential Yukawas Yαβγ were unknown. If this were the case, the problem would

be overdetermined. We would be unable to separate the functional dependence of the

superpotential Yukawa couplings Yαβγ and the metric dependence K̃αK̃βK̃γ . Even knowing

the full functional form of the physical Yukawa couplings would give no definite information

about the functional form of the matter metrics. However in many cases this dependence is

known. Certain moduli are forbidden from appearing in Yαβγ , and in this case the scaling

behaviour of Ŷαβγ can be directly related to that of K̃α.

Our particular interest here is in IIB flux compactifications. In this case the Kähler

moduli Ti are forbidden from appearing in the tree-level superpotential. This can be

understood from the Peccei-Quinn shift symmetry

Im(Ti) → Im(Ti) + εi, (2.4)

which is unbroken perturbatively. As the superpotential is holomorphic, a perturbative

dependence on Re(T ) will also give a perturbative dependence on Im(T ), violating the

shift symmetry. The non-renormalisation theorems then imply that the Ti do not appear

in the superpotential - and thus the Yukawa couplings Yαβγ - to any order in perturbation

theory. It is this that makes it feasible to compute the modular weights of K̃α with

respect to the Kähler moduli. The complex structure moduli do however enter the tree-

level superpotential, and so it is not possible to extract any information about K̃α(Ua)

from Ŷαβγ(Ua) (even supposing this could be calculated). The techniques of this paper will

apply only to those moduli (such as Ti) that are forbidden from appearing in Yαβγ and not

to the moduli (such as Ua) that do appear in Yαβγ .

Moduli (such as the T-moduli) that do not appear perturbatively in the superpotential

may appear nonperturbatively [10, 16]. This may then give nonperturbative corrections

to the Yukawa couplings. Such corrections will not affect the results of this paper. This

is because our analysis is carried out in a limit of large cycle volume, in which nonpertur-

bative corrections to the Yukawas are exponentially suppressed compared to the tree-level

Yukawas. In IIB the tree-level Yukawas are given by a classical wavefunction overlap,

which will be dominant at large volume. Our analysis will determine the classical modular

weights; small nonperturbative corrections to the Yukawas will give small nonperturbative

corrections to the modular weights. In cases where the Yukawas arise solely from non-

perturbative effects - as in IIA compactifications - the techniques described in this paper

naively do not apply, as there are no classical Yukawa couplings.

– 4 –
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Our main interest is in strings supported on magnetised D7 branes. D7 branes wrap

4-cycles whose size is given by Re(Ti). In the dilute flux approximation, the gauge coupling

is given by the size of the cycle. The statement that the gauge theory is weakly coupled is

equivalent to the statement that the cycle size is large. In this case the matter metric can

be expanded as a power series in τi = Re(Ti),

K̃α = τλ
i K̃0(Ua) + τλ−1

i K̃1(Ua) + . . . (2.5)

τi contains a factor e−φ = g−1
s and thus the higher terms in (2.5) can be interpreted

as loop corrections. Through (2.3) the modular weight λ determines the scaling of the

physical Yukawa couplings with the cycle volume. Thus the computation of λ reduces to

the computation of the scaling of the physical Yukawa couplings with cycle volume.

The techniques we will use below are:

1. In a large volume compactification one of the Kähler moduli is much larger than

the other ones and determines the overall volume. We can then concentrate on the

leading power of inverse volume in the Kähler potential. Matter fields are localised

on one of the smaller cycles and so we can use locality to restrict the dependence of

the Kähler potential, as rescaling the volume should not change the physical Yukawa

couplings. As we know the relation between Yukawa couplings and Kähler potentials,

this provides information about the volume dependence of the Kähler potentials.

2. Our fundamental calculational tool is the viewpoint that physical Yukawa couplings

arise from the triple overlap of normalised wavefunctions. Due to the constraints of

supersymmetry and holomorphy, these wavefunctions can only depend in a simple

fashion on the Kähler moduli: classically these enter the normalisation only as an

overall scale as in (2.5). The detailed form of the wavefunctions, giving rise to flavour

and textures, come from the complex structure moduli, which enter into the super-

potential Yαβγ(Ua). The point is that the overlap integral has a simple dependence

on the Kähler moduli and its scaling can be computed without having to compute

Yαβγ(Ua).

This understanding of Yukawa couplings as due to the triple overlap of normalised

wavefunctions is both intuitive and supported by explicit calculation. In section 3.1 we shall

describe below how it arises directly in the dimensional reduction of higher dimensional

Yang-Mills theories - these are the low-energy limits of magnetised brane constructions.

As a warm-up, we illustrate the above approach with a one-dimensional toy example,

pointing out the correspondences between it and the more realistic IIB Calabi-Yau flux

compactifications subsequently considered.

2.1 A one-dimensional toy model

The toy model consists of particle states on a 1-dimensional line x = −∞ → ∞. Parti-

cles are assumed to be localised about defects on the line located at ξa, ξb and ξc. The

wavefunctions are assumed to be Gaussian and of equal width a. We take an infinite line

– 5 –
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Figure 1: A one-modulus toy model, illustrating three Gaussian matter wavefunctions. The

Yukawa coupling is determined by the integrated overlap of the normalised wavefunctions.

for convenience, but because of the rapid wavefunction falloff we may imagine identifying

the points x = −100 (say) and x = 100 without affecting the physics. The normalised

wavefunctions are

ψa(x) =
1

π1/4a
1
2

e−
(x−ξa)2

2a2 , (2.6)

ψb(x) =
1

π1/4a
1
2

e−
(x−ξb)2

2a2 , (2.7)

ψc(x) =
1

π1/4a
1
2

e−
(x−ξc)2

2a2 . (2.8)

The forms of these wavefunctions are illustrated in figure 1 for ξa = 1.5, ξb = 3, ξc =

−1.5 and a = 1. The Yukawa coupling is given by the triple overlap of the normalised

wavefunctions,

Ŷabc =

∫ ∞

x=−∞

dxψa(x)ψb(x)ψc(x)

=

∫ ∞

x=−∞

dx
1

π3/4a3/2
e

−(x−ξa)2−(x−ξb)2−(x−ξc)2

2a2 . (2.9)

The Yukawa coupling is exponentially sensitive to the values of the ξi. In the corre-

spondence with IIB compactifications, ξi/a corresponds to the complex structure moduli,

determining the shape of the wavefunctions, whereas the size of the line corresponds to the

Kähler moduli.

We now consider rescaling the size of the line (the ‘Kähler modulus’), without altering

the shape of the wavefunctions (the ‘complex structure moduli’). This corresponds to

scaling x → λx. In order for the relative positions and shapes of the wavefunctions to be

unaltered, we must also rescale ξa → λξa and a → λa. This leaves the relative breadth and

– 6 –
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Figure 2: The same toy model wavefunctions after rescaling the size of the real line. The loci

and breadths of the wavefunctions have also been rescaled and so the relative shapes are unaltered.

However the physical Yukawa coupling scales parametrically with the size of the real line and its

absolute magnitude has changed.

central values of the wavefunctions unaltered. The new wavefunctions are

ψa(x) =
1

π1/4λ
1
2 a

1
2

e
−

(x−λξa)2

2(λa)2 , (2.10)

ψb(x) =
1

π1/4λ
1
2 a

1
2

e
−

(x−λξb)2

2(λa)2 , (2.11)

ψc(x) =
1

π1/4λ
1
2 a

1
2

e
−

(x−λξc)2

2(λa)2 . (2.12)

The rescaled wavefunctions (for λ = 2) are illustrated in figure 2.

However, the physical Yukawa couplings do alter under this rescaling,

Ŷabc →
Ŷabc√

λ
. (2.13)

Note we can determine the scaling in (2.13) without ever having to evaluate the integral

in (2.9). In a IIB context, computing the integral in (2.9) corresponds to computing

the complete Yukawa coupling and would require a full-fledged Calabi-Yau computation.

However the scaling of the physical Yukawas on the Kähler moduli can be much simpler,

and as in (2.13) we can hope to compute it through elementary arguments.

In the framework of N = 1 supergravity, we could now use the result of (2.13) to

deduce the dependence of the matter metrics on the ‘Kähler moduli’. However we now

seek to move beyond toy examples and apply the above strategy to IIB Calabi-Yau flux

compactifications.

3. The large-volume model

We now apply the above ideas to realistic examples. We will use two geometries, first that

of the large-volume models of [14, 15] and then that of the torus. As the first involves a

– 7 –
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full Calabi-Yau geometry, there is no direct approach to computing bifundamental matter

metrics.

3.1 Kähler metrics

We start this section with a brief description of the geometry of the large-volume models.

These models exist within the framework of IIB flux compactifications with D3 and D7

branes. The Kähler potential and superpotential for the moduli take the standard form [10,

19, 17, 18],

K̂(Φ, Φ̄) = −2 ln

(

V +
ξ̂

2g
3/2
s

)

− ln

(

i

∫

Ω ∧ Ω̄

)

− ln(S + S̄). (3.1)

Ŵ (Φ) =

∫

G3 ∧ Ω +
∑

i

Aie
−aiTi . (3.2)

V is the Einstein-frame volume of the Calabi-Yau. We use Φ to denote an arbitrary modulus

field and do not specify the total number of moduli. The dilaton and complex structure

moduli are stabilised by fluxes. The Kähler moduli are stabilised by a combination of α′

corrections and nonperturbative superpotentials. As shown in [14, 15], these very generally

interact to produce one exponentially large cycle controlling the overall volume together

with h1,1 − 1 small cycles. We denote the large and small moduli by Tb = τb + icb and

Ti = τi+ici respectively, with i = 1 . . . h1,1−1. Consistent with this, we assume the volume

can be written as

V = τ
3/2
b − h(τi), (3.3)

where h is a homogeneous function of the τi of degree 3/2. The simplest model, whose

properties have been studied in detail in [14, 15, 20], involves the manifold P
4
[1,1,1,6,9] and

has h1,1 = 2 with

V = τ
3/2
b − τ3/2

s . (3.4)

The large volume lowers both the string scale and gravitino mass,

ms ∼
MP√
V

and m3/2 ∼ msoft ∼
MP

V .

The stabilised volume is exponentially sensitive to the stabilised string coupling, V ∼ e
c

gs ,

and may thus take arbitrary values. A volume V ∼ 1015l6s ≡ 1015(2π
√

α′)6 is required to

explain the weak/Planck hierarchy and give a TeV-scale gravitino mass. As ms À m3/2,

the low-energy phenomenology is that of the MSSM and thus the computation of matter

metrics is an important part of the phenomenology.

We will not review the details of the moduli stabilisation here, leaving those to the

references [14, 15]. Our interest here is rather in computing matter metrics and their de-

pendence on the geometry. This geometry is illustrated in figure 3. The stabilised volumes

of the small cycles are τs ∼ lnV. D7-branes wrapped on such cycles have gauge couplings

qualitatively similar to those of the Standard Model. If the branes are magnetised, Stan-

dard Model chiral matter can arise from strings stretching between stacks of D7 branes.

– 8 –
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Figure 3: The physical picture: Standard Model matter is supported on a small blow-up cycle

located within the bulk of a very large Calabi-Yau. The volume of the Calabi-Yau sets the gravitino

mass and is responsible for the weak/Planck hierarchy.

We assume the Standard Model arises from a stack of magnetised branes wrapping one

(or more) of the small cycles. Given this assumption, our aim is to compute the modular

weights of the matter metrics for the bifundamental chiral matter.

In what we shall call the ‘minimal model’, there exists only one small blow-up 4-cycle

on which a stack of magnetised D7 branes are wrapped. The existence of only one small

cycle need not be incompatible with the several different gauge factors of the Standard

Model. The spectrum of chiral fermions depends on the magnetised flux F present on the

brane worldvolume. This is quantised on 2-cycles Σi,
∫

Σi

F ∈ Z. (3.5)

If several such 2-cycles exist within the 4-cycle, different brane stacks can be realised

through different choices of 2-form flux on these 2-cycles. This is consistent with there

being only one small cycle, as these 2-cycles may be homologically trivial within the Calabi-

Yau and only non-trivial when restricted to the 4-cycle. As the cycle is a blow-up cycle,

the branes cannot move off the cycle and have no adjoint matter. This permits a chiral

spectrum, as found in explicit models of branes at singularities [21]. The geometry of this

minimal model is shown in figure 4.4 We now address the computation of the modular

weights.

4The minimal model is unlikely to be suitable for generating the exact MSSM gauge group. This is

because a four-brane stack has four U(1) factors, three of which must become global and massive in order

to give the single U(1) factor of the MSSM. U(1)s become global through the Green-Schwarz mechanism,

but this requires the internal 2-cycles to be nontrivial within the Calabi-Yau. We thank the referee for

drawing our attention to this point.
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Figure 4: In the minimal geometry, there is only one small 4-cycle. The different brane stacks of

the Standard Model are distinguished by having different magnetic fluxes on the internal 2-cycles

of the 4-cycle. In the minimal model above, these 2-cycles are not inherited from the Calabi-Yau

and only exist as cycles in the geometry of the 4-cycle. Four distinct brane stacks are required

to realise the Standard Model, and we schematically show how these stacks are distinguished by

different choices of magnetic flux.

3.1.1 Volume dependence

In the large-volume limit we can factorise K̃α as in (2.5),

K̃α = τ−pα

b kα(τi, φ). (3.6)

τb ∼ V2/3 is the size of the large 4-cycle and we use φ to denote both dilaton and complex

structure moduli. While we have included an index pα, from the picture of figure 3 we

expect universality as locality implies all matter flavours should see the overall volume in

the same way. We now argue that actually pα = 1.

To do so let us analyse the expressions for the physical Yukawa couplings. Using

K̂ = −2 lnV in (2.3), we obtain

Ŷαβγ =
xYαβγ

(kαkβkγ(τi, φi))
1
2

τ
−3+(pα+pβ+pγ )

2
b , (3.7)

where x is O(1) and defined by xV = τ
3/2
b (1 + . . .).

In the large-volume scenario illustrated in figures 3 and 4, the Standard Model branes

are all supported around a localised (set of) small cycle(s) within a very large bulk. The

physical origin of Yukawa couplings is through the interaction and overlap of the quantum

– 10 –
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wavefunctions associated with the different matter fields. Matter fields supported on branes

are localised on the branes, and thus the wavefunctions for Standard Model matter all have

support in the local geometry on the small 4-cycle. As the interactions are determined only

locally, in the large-volume limit the physical Yukawa couplings should be independent of

the overall volume, provided that the local geometry is unaltered.

This argument is equivalent to saying that it is consistent to decouple gravity by taking

MP /ms → ∞ and study the field theory on the branes. The decoupling of gravity, which

is achieved by taking the volume of the Calabi-Yau to infinity, does not force the physical

Yukawa couplings to vanish. Such a situation is familiar from the study of branes at

singularities, where the low-energy theory on the brane is well-defined and non-trivial even

though the Calabi-Yau is non-compact.

The effect of the above is to tell us that the physical Yukawa couplings Ŷαβγ of (3.7)

should be invariant under rescalings τb → λτb. This implies

pα + pβ + pγ = 3

for all matter fields present in the Yukawa couplings. As noted earlier, to make this

deduction it is crucial that the superpotential Yukawa couplings cannot depend on T . In

the scenario of figures 3 and 4, all Standard Model matter arises as localised bifundamental

D7-D7 states, and thus should experience the overall volume in the same way. We therefore

expect pα to be universal, giving

pα = 1 ∀α. (3.8)

Equation (3.8) completely determines the modular weight of the matter fields with regard

to the overall volume.

3.1.2 Small cycle dependence: the minimal model

We now address the calculation of the modular dependence on the small moduli for chiral

bifundamental matter. We aim to compute the leading power-law dependence for the

minimal model, working in the dilute flux approximation.

By performing a series expansion in τs, we can write

K̃αβ̄ =
τλ
s

V2/3
kαβ̄(φ). (3.9)

As in the dilute flux approximation the 1
τs

expansion is the perturbative weak coupling

expansion, we know the expression (3.9) will be valid for large values of τs. Corrections

to (3.9) subleading in τs will be suppressed at large cycle volume. The physical Yukawa

couplings are given by (2.3)

Ŷαβγ = eK̂/2 Yαβγ

(K̃αK̃βK̃γ)
1
2

. (3.10)

To obtain λ, it is therefore sufficient to obtain the scaling of Ŷαβγ with τs.

In the minimal model, we assume that the Standard Model comes from dimensional

reduction of a stack of D7 branes wrapped on the small 4-cycle. The chiral spectrum
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can in principle be found by dimensional reduction of the higher dimensional super Yang-

Mills action in the presence of magnetic fluxes. This gives an explicit realisation of the

understanding of Yukawas as due to the overlap of normalised wavefunctions, analogous to

the computation of Yukawa couplings in either the heterotic string [22] or for D9 branes,

for which this problem has been treated very explicitly in [23]. The action to be reduced is

the DBI action, which in the dilute-flux approximation reduces to that of super Yang-Mills,

whose fermionic terms include
∫

M4×Σ
λ̄Γi (∂i + Ai) λ. (3.11)

We drop precise numerical factors of π or α′. The higher dimensional gauge field (Ai) and

gaugino (λ) can be decomposed in a dimensional reduction,

Am =
∑

i

φ4,i ⊗ φ6,i λ =
∑

i

ψ4,i ⊗ ψ6,i. (3.12)

We are most interested in the spectrum of massless chiral fermions in four dimensions. This

is determined by counting the number of solutions of the Dirac equation on the cycle in the

present of magnetic fluxes. This is given by an index theorem and is topological, depending

only on the cycle geometry and the magnetic fluxes. This specifies both the number

and charge of the fermions present, and these quantities are invariant under continuous

deformations of the cycle.

Direct reduction of the action (3.11) gives both the kinetic terms

Lkin ∼ ψ̄∂ψ (3.13)

and the Yukawa couplings

LY ∼ φψ̄ψ. (3.14)

The magnitude of the physical Yukawa couplings is determined by the relative magnitude

of these two terms. Note that the physical Yukawas are dimensionless quantities and

can be determined without any reference to the Planck scale or the normalisation of the

gravitational action.

A full calculation of the Yukawa couplings requires the explicit scalar and fermion

wavefunctions. We suppose we have solved the Dirac and Laplace equations,

ΓiDiψA = ΓiDiψB = ∇2φC = 0, (3.15)

where Di and ∇2 are the appropriate differential operators on the fluxed 4-cycle.

From (3.11), the kinetic term for the four-dimensional fermion ψA is

(
∫

Σ
ψ†

6,Aψ6,A

)
∫

M4

ψ̄4,AΓµ∂µψ4,A. (3.16)

Normalisation of the kinetic terms then requires that
∫

Σ
ψ†

A,6ψA,6 =

∫

Σ
ψ†

B,6ψB,6 =

∫

Σ
φ∗

6φ6 = 1. (3.17)
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The four-dimensional Yukawa couplings are also determined by the action (3.11),

(
∫

Σ
ψ̄AΓiAi,CψB

)
∫

M4

φC ψ̄AψB . (3.18)

The physical magnitude of the Yukawa coupling ŶABC are given by the overlap integral of

normalised wavefunctions

ŶABC =

∫

Σ
ψ̄AΓiAi,CψB . (3.19)

Our interest is the scaling of (3.19) with the cycle volume. Under a rescaling τs → βτs, it

follows from (3.17) that the normalised wavefunctions scale as

ψA → ψA√
β

. (3.20)

The physical Yukawas then scale as

Ŷ ′
ABC ∼

∫

Σ
(βd4y)

(

ψA√
β

)(

ψB√
β

)(

φC√
β

)

=
ŶABC√

β
. (3.21)

One may worry that under rescaling of the cycle volume the wavefunctions would undergo

far more dramatic changes than the simple rescaling of (3.20). In the limit of dilute fluxes

and large cycle volumes, this cannot occur. If the wavefunctions were to change their shape,

rather than just their normalisation, the physical Yukawa couplings would also change far

more dramatically than the simple scaling of (3.21). However, this cannot occur. The

texture of the Yukawa couplings comes from the superpotential, and thus cannot depend

on the Kähler moduli. They can only be changed by a change in the complex structure

moduli, which has not occurred. The Kähler moduli can only affect the physical Yukawa

couplings through the power λ of (3.9), which corresponds purely to an overall scaling of

the wavefunctions and not to a change in the shape.

As the cycle size becomes smaller, quantum corrections due to the gauge group on

the brane become important. These can alter the shape of the various wavefunctions -

this corresponds to subleading powers of τs in (3.9). However, in the limit of large cycle

volumes and dilute fluxes, this effect goes away and the wavefunctions become the purely

classical ones with scaling behaviour given by (3.20).

The result (3.21) implies that the scaling of the physical Yukawas with the cycle

volume is

Ŷαβγ ∼ Ŷαβγ√
τs

. (3.22)

This same dimensional reduction implies that the physical Yukawas do not scale with the

overall volume. This is a calculational illustration of our earlier point that the Yukawa

interaction is local and so should be insensitive to the bulk volume.

Comparison with equation (3.10) then shows that the matter metric must scale as

K̃α(τs) ∼
τ

1/3
s

V2/3
kα(φ). (3.23)
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Here we note that nothing in our analysis has depended on whether the matter metric is

diagonal or otherwise. The flavour structure is encoded in the superpotential and thus

is only seen by the complex structure moduli. We can perform a rotation of the matter

fields to diagonalise the kinetic terms, absorbing the non-diagonality in the (unknown)

Yukawa couplings. Thus the scaling behaviour of (3.23) also applies to general non-diagonal

metrics. For the minimal model, this therefore determines the matter metric in the large

cycle volume dilute flux approximation to be of the form

K̃αβ̄ =
τ

1/3
s

V2/3
kαβ̄(φ). (3.24)

While the powers in (3.24) are in principle only the leading terms in a power series expan-

sion, they dominate in a weak coupling expansion.

How large are the subleading terms? As in the dilute flux approximation τs controls

the gauge coupling on the branes, we should interpret the series expansion in τs as an

expansion in the coupling of the gauge theory. For a theory with gauge coupling

α =
g2

4π
,

loop effects are suppressed by a factor α
2π ≡ g2

8π2 . For wrapped D7 branes, reduction of the

DBI action gives

α =
1

2τ
, (3.25)

and so loop corrections are suppressed by ∼ 4πτ ∼ 100 and are at the percent level. Thus

this suggests that the expansion in powers of τ is a well-controlled expansion. As the size of

τ is determined by matching onto the observed gauge couplings, this is simply the statement

that the Standard Model gauge couplings at Λ ∼ 1011GeV (in the large-volume models,

this is the string scale required for TeV-scale supersymmetry) lie deep in the perturbative

regime.

Let us discuss the assumptions made in deriving (3.24). The first assumption was

that of locality - the strength of the physical Yukawa interaction is insensitive to the

overall volume. The justification for this is that all chiral matter is localised around the

small cycle and thus the interactions are localised as well. This assumption completely

determines the power of the volume that appears in (3.24). The second assumption was

that of the minimal model - all chiral matter arises from dimensional reduction of a single

stack of magnetised branes. This determined the power τ
1/3
s in (3.24). It seems difficult to

escape the first assumption. However if the local geometry is more complicated than that

of the minimal model, this second assumption may not hold. We now investigate some

other possibilities for the local geometry and how they would alter the power λ.

3.1.3 Small cycle dependence: more complicated geometries

In the previous section, we assumed all D7s giving rise to the Standard Model wrapped an

identical 4-cycle. If this does not hold, we would expect that (3.24) could be altered. We

can envisage a situation in which the D7s are wrapping different small 4-cycles that are
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however localised in a region of the CY, with volumes that are small and approximately

equal. Under this assumption, one can still obtain approximate but concrete expressions

similar to (3.24).

While we cannot now just reduce a single higher-dimensional action, we again expect

that Yukawa couplings will arise from the overlap of normalised wavefunctions. These

wavefunctions are supported on the pair-wise intersection locus of D7 branes, while the

Yukawa coupling is supported on the triple intersection locus.

Three D7 branes intersecting at a point

Since one would not expect Yukawa couplings to arise in IIB string theory from non-

intersecting branes5 the minimal scenario is three stacks of D7s (named for concreteness a,

b and c), each wrapping a small 4-cycle in the Calabi-Yau, intersecting pairwise in 2-cycles

(labeled ab, bc and ca) and whose triple intersection is a single point. The wavefunctions

corresponding to the chiral fermions arising in the overlap of each pair of stacks have

support only in the intersection 2-cycle, and hence their dependence on the 2-cycle volume

must be

ψα
ij(zij) ∼

1
√

Aij

, (3.26)

with zij the complex coordinate parametrising the 2-cycle, ij = ab, bc, ca, and Aij is the

2-cycle volume. α labels the family replication of the corresponding wave functions. The in-

teractions of these are distinguished, as already emphasised, only by the complex structure

moduli. Assuming that the triple intersection point is given by (z0
ab, z

0
bc, z

0
ca), the Yukawa

coupling will just be the product of the wave functions evaluated at this point:

Ŷαβγ = ψα
ab(z

0
ab)ψ

β
bc(z

0
bc)ψ

γ
ca(z

0
ca) ∼

1√
AabAbcAca

∼ τ−3/4
s , (3.27)

where we have further assumed that all volumes are of similar size and are related to some

characteristic 4-cycle volume τs. Assuming the same behaviour as in (3.9), we readily find

λ = 1/2 and hence

K̃α ∼ τs
1/2

V2/3
k(φ). (3.28)

The power of λ is increased compared to the case of the minimal model. As the branes

wrap different cycles in this example, we would expect that ‘τs’ as appears in (3.28) should

be expanded to be a function of the several moduli corresponding to the different cycles.

Another possibility is to have three stacks of branes whose common intersection is a

2-cycle. There are several possibilities here, some of them not easy to analyse, but there

are two cases whose behaviour can be extracted straightforwardly. We follow the notation

of the previous subsection.

5Contrary to the IIA case, in which Yukawa couplings can be generated among three D6-branes with no

common intersection by world-sheet instanton amplitudes [24], these kind of contributions cannot appear

in IIB orientifolds. The reason is that any world-sheet instanton contribution to the superpotential must

be holomorphic in
R

Σ
(J + iB), Σ being the relevant (area minimising) 2-cycle wrapped by the world-sheet,

J the Kahler form and B the B-field. But in IIB orientifold constructions the internal B-field is projected

out and hence these contributions are absent.
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Two branes overlapping on a 4-cycle

Suppose branes a and b overlap on a 4-cycle Πs whose volume is given by the Kähler

modulus τs, and brane c wraps a different 4-cycle Πa whose intersection with Πs is a

2-cycle whose area is denoted by A. The corresponding wave functions scale as

ψab ∼ 1√
τs

,

ψbc ∼ 1√
A

, (3.29)

ψca ∼ 1√
A

.

Hence the Yukawa coupling scales as

Ŷαβγ =

∫

ΠA

ψabψbcψca ∼ 1√
τs

. (3.30)

From this result we again get λ = 1/3 and the dependence of the Kähler metric as

K̃α ∼ τs
1/3

V2/3
k(φ). (3.31)

Three branes intersecting pairwise on the same 2-cycle

We now suppose we have three branes wrapping different cycles, such that the any pair of

these branes intersect in the same 2-cycle Σ. The three stacks therefore also intersect in

Σ. Clearly the three wave functions scale as

ψij ∼
1√
A

, (3.32)

where A is the area of Σ. We find

Ŷαβγ =

∫

Σ
ψabψbcψca ∼ 1√

A
∼ τ−1/4

s . (3.33)

Here τs is the four-dimensional volume of a characteristic local 4-cycle of the construction,

such that (roughly) A ∼ √
τs. We obtain λ = 1/6 and

K̃α ∼ τs
1/6

V2/3
k(φ). (3.34)

As above we expect that due to the several cycles wrapped τs should be expanded to be a

function of the several moduli corresponding to the different cycles.

A bound on λ

In all the constructions analysed above we have found a value for λ between 0 and 1. One

could ask whether there is a physical reason for having λ within these limits. In fact this

does seem to be the case.
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From the above analyses the physical Yukawa couplings scale as

Ŷ ∼ V123√
V12V23V31

. (3.35)

V123 is the volume of the brane triple intersection, and Vij the volume of the pairwise inter-

section between stack i and j. The Vij(k) are non-decreasing functions of the characteristic

small 4-cycle volume τs (parametrised at first order by powers Vij(k) ∼ τα, with α = 1 if

the relevant intersections are 4-cycles, α = 1/2 if they are 2-cycles, etc). Note that, for a

given value of τs, Vijk ⊂ Vij, since V123 characterises the volume of the triple intersection.

Then, if we parametrise the scaling of the Yukawa coupling as

Ŷ ∼ τ−β (3.36)

for some real β, we see that necessarily β ≥ 0. Now, assuming a dependence of the Kähler

metrics of the fields with τs like K̃ ∼ τλ
s , we find λ = 2β/3, and hence λ ≥ 0.

We can also extract an upper bound on λ by similar arguments. An upper bound on

λ implies an upper bound on β. This will be attained whenever the numerator in (3.35)

is minimised and the denominator maximised. Clearly the denominator is maximised

whenever all Vij ∼ τs, and the numerator will be minimised when V123 ∼ 1. Irrespective

of whether this can be realised or not, this is clearly the strongest dependence possible,

since V123 cannot scale negatively with the volume. This dependence implies β ≤ 3/2 and

λ ≤ 1. Hence we conclude that λ ∈ [0, 1].6

3.2 Vanishing of the µ term

We now also argue, using similar scaling arguments as above, that in the large-volume

models the superpotential µ term should vanish. Going from supergravity to field theory,

the physical (i.e. normalised) µ parameter is given by

µ̂ =
(

eK̂/2µ + m3/2Z − F m̄∂m̄Z
)

(K̃H1K̃H2)
− 1

2 , (3.37)

where the F -terms are given by:

Fm = eK̂/2K̂mn̄Dn̄
¯̂
W. (3.38)

We write

K̃H1 = τ−p1

b kH1(τi), (3.39)

K̃H2 = τ−p2

b kH1(τi), (3.40)

Z = τ−pz

b z(τi). (3.41)

6The bound λ < 1 also follows from the requirement of a good classical limit, τb → ∞, τs →

∞, τb/τs constant, in which the Kähler metric does not diverge.
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We do not yet impose p = 1 because this is helpful in seeing the calculational structure.

The physical µ term is then from (3.37) found to be

µ̂ =
(

eK/2µ + m3/2Z − F m̄∂m̄Z
)(

K̃H1K̃H2

)− 1
2

(3.42)

=
τ

p1+p2
2

b

(kH1kH2(τi))
1
2

(

eK̂/2µ + m3/2Z − F m̄∂m̄Z
)

(3.43)

=
xτ

p1+p2−3
2

b

(kH1kH2)
1
2

µ +
z

(kH1kH2)
1
2

τ
p1+p2

2
−pz

b m3/2 − (F m̄∂m̄Z)
τ

p1+p2
2

b

(kH1kH2)
1
2

. (3.44)

We evaluate

F m̄∂m̄Z = pzm3/2τ
−pz

b z + τ−pz

b F ī∂īz. (3.45)

Therefore

µ̂ = x
τ

p1+p2−3
2

b

(kH1kH2)
1
2

µ +
τ

p1+p2
2

−pz

b

(kH1kH2)
1
2

[

z(1 − pz)m3/2 − F ī∂iz
]

. (3.46)

Equation (3.8) now implies that the superpotential µ term must vanish. By using (3.8)

in (3.46), we see that the volume scaling of the first term of (3.46) is

µ′ ∼ V−1/3µ + . . . .

However, recall that the string scale behaves with volume as

ms ∼ V−1/2MP .

Thus for any non-zero value of µ we can make the physical mass µ′ arbitrarily greater than

the string scale by taking the classical large-volume limit V → ∞. As such behaviour is

unphysical, the only consistent case is µ = 0. Of course, the vanishing of the superpotential

µ term in (3.46) does not imply the vanishing of the physical µ term, which can be generated

by a non-zero Z in the Giudice-Masiero mechanism [26].

4. The single Kähler modulus case

In this section we restrict to the simplest case of one Kähler modulus. In particular, this

is the original realisation of the KKLT scenario. We consider this case separately for two

reasons. First, as the simplest case it is more often used in the literature and therefore

it is useful to have an explicit expression for the Kähler metric for it. Secondly, the large

volume scenario usually requires more than one Kähler modulus and therefore the results

of the previous section do not directly apply to this case. In particular we cannot just

assume the configuration of figure 3.

We can see here that the arguments of section (3.1.2) can still be used for the minimal

model in which the Standard Model comes from dimensional reduction of a stack of D7

branes wrapped on a single 4-cycle of size τ = T+T ∗

2 . The Kähler potential then can be

written as

K = −3 log (T + T ∗) + K̃(T, T ∗)C∗C + · · · , (4.1)
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with K̃(T, T ∗) = (T + T ∗)−p. We are left with the task of determining the power p.

Following section (3.1.2) we can see again that the physical Yukawa couplings scale like

(T + T ∗)−1/2 from overlapping wavefunctions. Then, using (3.10), eK̂/2 = (T + T ∗)−3/2

and the fact that the original superpotential Yukawa couplings Y do not depend on T , we

get p = 2/3.

Therefore the Kähler potential to leading order in the Kähler modulus expansion looks

like:

K = −3 log (T + T ∗) +
C∗C

(T + T ∗)2/3
+ · · · (4.2)

Notice that this argument did not use the exponentially large volume. Furthermore,

it can easily be seen that this power 2/3 will also appear in the large volume scenario if

the D7 branes wrap the exponentially large cycle instead of a ‘small’ cycle as was assumed

in the previous section. The reason for this is that the volume is dominated by the large

modulus τb with V ∼ τ
3/2
b , and therefore the Kähler potential for the multi-moduli case

looks similar to the one in (4.2). This is also consistent with substituting τs by τb, with

λ = 1/3 and V ∼ τ
3/2
b in (3.23).

5. Toroidal examples

In this section we apply a similar approach to the case of toroidal compactifications. This

differs from the large volume setup considered earlier, since here it is not possible to

localise a small 4-cycle within a large bulk. However, we will see how one can still get the

correct dependence on the Kähler moduli for the matter Kähler metrics from the type of

scaling arguments used earlier. Our results can be compared with the explicit, complete

expressions obtained in [12, 7].

Consider a factorisable T 6 with three Kähler moduli denoted by ti. These are related

to the areas of the 2-tori by ti ∼ AjAk. Consider a system of three magnetised D7 branes,

each wrapping a different pair of tori and being point-like in third one7. Being magnetised

branes, chiral fermions arise from the overlap of each pair of branes. For example in the case

of D71 and D72 branes, this fermion has support on the third torus. The corresponding

normalised wave functions (only defined on the overlap between the branes) are given by8

ψ12(z3) ∼ 1√
A3

,

ψ23(z1) ∼ 1√
A1

, (5.1)

ψ31(z2) ∼ 1√
A2

,

7In standard notation, we call these a branes D71, D72, D73, where D71 is point-like in the first torus

and wraps the second and third tori.
8In the notation of [23] these wave functions would have been defined multiplied by two ‘square roots of

δ−functions’. These
√

δ functions allow the Yukawa couplings to be defined as an integral over the whole

T 6, rather than only over the overlap space. We prefer to remove these delta functions for clarity and for

notational consistency with the rest of the paper.
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where the zi are the corresponding complex coordinate of each torus. For clarity, we have

dropped the wavefunction dependence on complex structure moduli which differ between

flavours, but actually this can be explicitly computed. This calculation was performed

in [23]; the generic, complete form of the wave functions is given by

ψα
ij(z) =

(

2Im τ |M |
A2

k

)1/4

eiπM(z+ζ)
Im (z+ζ)

Im τ · ϑ
[

α
M

0

]

(M(z + ζ),Mτ) . (5.2)

In this expression, z stands for the complex coordinate in the kth torus, τ is the complex

structure of this kth torus and ζ are complexified Wilson lines degrees of freedom, depending

also on the complex structure. M ∈ Z is the relative magnetic flux in the kth torus, and α

labels the different matter fields in the same family. ϑ is given by the Jacobi theta-function

ϑ

[

a

b

]

(ν, τ) =
∑

l∈Z

eπi(a+l)2τ e2πi(a+l)(ν+b). (5.3)

These wave functions are solutions both of the Dirac and Laplace equations on the magne-

tised torus. The purpose of including the wavefunction (5.2) is to emphasise the contrast

between the functional dependence on the Kähler moduli Ak and the complex structure

moduli τ .

If we suppose, without loss of generality, that the intersection point between the three

D7s is located at zi = 0, then the physical Yukawa coupling is

Ŷαβγ ∼ ψ12(0)ψ23(0)ψ31(0) ∼
1√

A1A2A3
∼ 1

(t1t2t3)1/4
. (5.4)

We see that the product of the three wave functions is always proportional to

(t1t2t3)
−1/4, and (comparing with the explicit wave functions on (5.2)), this is the only

place where the Kahler moduli appear, as expected. Hence, whereas the Kahler moduli

only give rise to an overall scale of masses, the complex structure moduli are responsible

for the structure of eigenvalues that eventually gives rise to the flavour structure of the

model. We must emphasise that this is the first term in a volume expansion for the Ai and

subleading contributions are to be expected, corresponding to quantum corrections to the

wave function.

Let us try and derive the Kähler moduli dependence of the matter metrics. The Kähler

potential for a torus is

K = − log(s + s̄) − log(t1t2t3) − log
3

∏

i=1

(Ui + Ūi). (5.5)

Relating the matter metrics to the physical Yukawa coupling through (2.3), we obtain

K̃12K̃23K̃31 ∼ 1√
t1t2t3

. (5.6)

This is consistent with the exact results [7, 12], which give

K̃12 ∼ 1√
t3

, etc. (5.7)
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We may also compare with the case of three, differently magnetised, D9 branes wrap-

ping a T 6, a case analysed in full detail in [23]. In this case the chiral fermions have support

over the entire T 6, with the wavefunctions being given by

ψ12 ∼ 1√
V

,

ψ13 ∼ 1√
V

, (5.8)

ψ23 ∼ 1√
V

. (5.9)

Again, in this case we can see from the explicit expressions in [23] how the wavefunctions

have a trivial dependence on the Kähler moduli but an intricate (and flavour-sensitive)

dependence on the complex structure moduli. A sample wave function has the generic

form of a product of three functions like (5.2), one for each of the tori in the factorisation9

T 6 = T 2 × T 2 × T 2. The physical Yukawa couplings thus scale as

Ŷαβγ ∼
∫

V
d6y ψab(y)ψbc(y)ψca(y) ∼ 1√

V
, (5.10)

and so the matter metrics behave as

K̃abK̃bcK̃ca ∼ 1√
t1t2t3

. (5.11)

These results are consistent with those of [23].

In the toroidal case, the above techniques are not able to fully determine the matter

metrics K̃ab, instead only giving the product K̃abK̃bcK̃ca. This is a consequence of the fact

that the D7 branes wrap several cycles and that for toroidal examples it is not possible to

separate the Yukawa interaction and the overall volume in the same way as for the large-

volume models. It would be interesting if these techniques could be developed to give the

individual matter metrics for the toroidal case.

6. Discussion and conclusions

In this paper we have developed techniques to compute modular weights for bifundamental

chiral matter in Calabi-Yau flux compactifications. These techniques have applications to

the computation of soft terms in gravity-mediated supersymmetry breaking. For chiral

matter arising from a single stack of (magnetised) D7-branes wrapping a small cycle in the

large-volume models of [14], we obtain

K̂αβ̄ =
τ

1/3
s

V2/3
kαβ̄(φ) + . . . , (6.1)

where φ denotes the complex structure moduli. (6.1) is the leading term in a series expansion

in τ−1
s and V−1.

9This is in the simplest case of a factorisable T 6 with no non-Abelian Wilson lines. As can be checked

in [23], the general expression becomes much more complicated.
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We can see that the bifundamental fields behave like the D3 brane fields and D7 Wilson

lines, in the large volume limit, rather than the D7 brane positions. This is consistent with

the fact that bifundamental D7 fields can be localised whereas the adjoint fields, describing

the position of the D7 branes in the bulk manifold, cannot.

Notice that this behaviour is also different from the one calculated for toroidal orbifolds.

Had we used the toroidal case as representative of Kähler potentials in the general case we

would have been misguided. The reason for the difference is that toroidal compactifications

do not provide good examples of large volume compactifications where the standard model

can be localised on a D7 brane, independent of the overall volume. The assumptions

we made in the large volume case do not hold for tori. However we were still able to

use our techniques regarding the structure of Yukawa couplings for toroidal cases and get

results consistent with the literature, once the peculiarities of toroidal compactifications

were considered.

We have also managed to extend our techniques to give an independent derivation of

the vanishing of the µ term in the superpotential. Therefore substantial information can

be obtained for Calabi-Yau compactifications even though explicit string calculations are

not viable. This illustrates the power of our techniques.

Let us discuss the limitations of the above techniques. First, the above method is

restricted to modular weights for those moduli that do not appear in the superpotential

Yukawa couplings. Such moduli are those with a shift symmetry, as these cannot appear

perturbatively in the superpotential and thus in Yαβγ . The moduli Kähler potential is

generally known and this allows the physical Yukawa couplings to be directly related to

the matter Kähler metrics. If moduli appear in the superpotential, then it is not possible

to separate the behaviour of the physical Yukawas into superpotential and Kähler potential

terms.

However, we still need to know the scaling behaviour of the physical Yukawas. This

gives a second restriction, that the physical Yukawa couplings arise from essentially classical

physics through wavefunction overlap. It is this that allowed us to compute the scaling

behaviour of Ŷαβγ in sections 3.1 and 5. If the Yukawas were nonlocal effects arising from

nonperturbative instanton effects (as does occur for IIA braneworlds), then it is not obvious

how to compute the scaling of Ŷαβγ .

Finally, the techniques all apply only to the classical weak-coupling limit. This is

equivalent to determining the leading power λ of τs in the expansion (3.9). In IIB com-

pactifications, τs controls the gauge coupling on D7 branes and so we expect the full

expression of (3.9) to be a series expansion in τs. However if τs ceases to be large, then

the knowledge of simply the leading power λ is inadequate as the expansion is not well

controlled.

We can foresee many applications of our results given the fact that bifundamental fields

are chiral and are expected to provide the physical observable particles in realistic models.

One such application is to determine the structure of soft terms. One of the principal

difficulties in computing soft terms in the large-volume models of [14] was the lack of

knowledge of the matter metrics for bifundamental fields. This required the use of generic

expressions in [15, 25, 20], referring to (for example) adjoint matter on D7 branes rather
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than the bifundamental matter most relevant for the problem of MSSM soft terms. This

has been addressed in section 3.1 of this paper and the results have obvious applications

to the computation of soft terms that will be presented in a companion paper [27].
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